Stroke Prevention in Atrial Fibrillation: A 2021 Update

Rakesh Gopinathannair, MD, MA, FAHA, FACC, FHRS

EP Medical Director, Research Medical Center

Director, Cardiac EP Laboratories, The Kansas City Heart Rhythm Institute

Professor of Medicine, University of Missouri-Columbia

Associate Professor of Medicine (Adjunct), University of Louisville

Email: rakesh.gopinathannair@hcahealthcare.com

RMC Stroke Symposium 9-17-2021

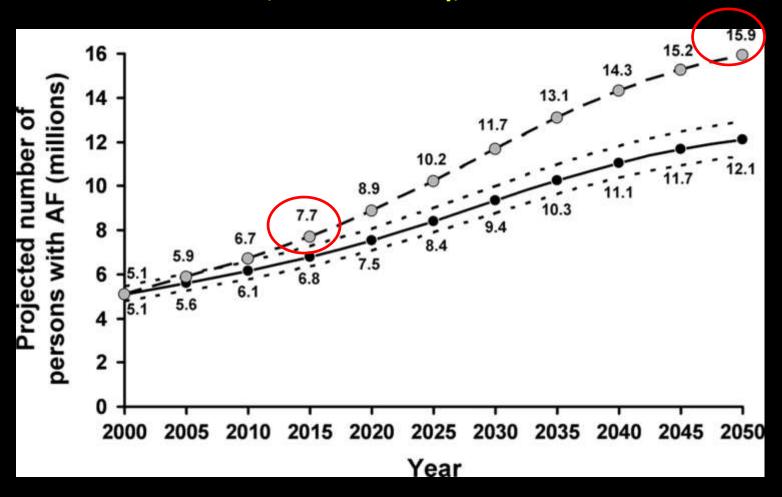
Disclosures

- Consultant/speaker: Abbott Medical, Boston Scientific, Pfizer,
 Zoll Medical
- Physician Advisor: Altathera, PaceMate

None relevant to the content of this presentation

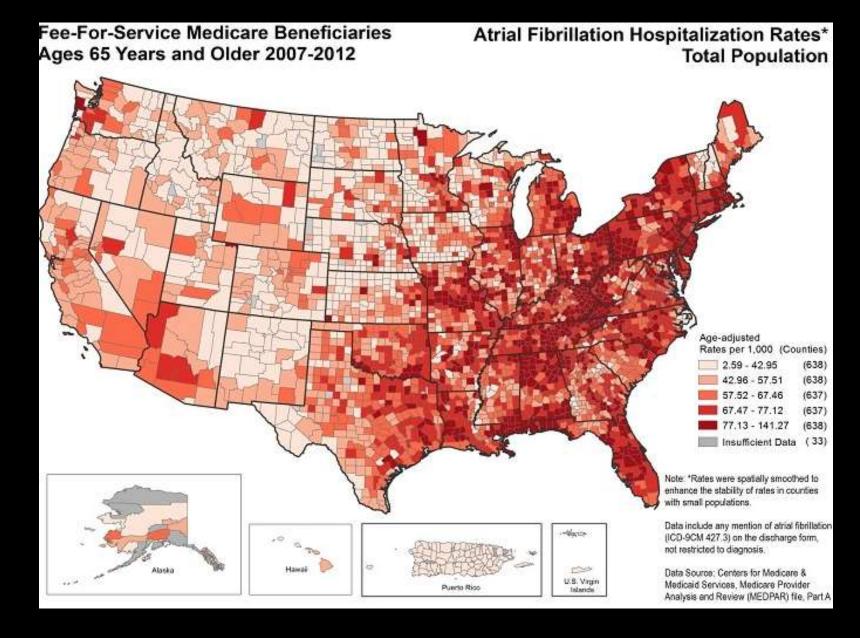
Outline

- Atrial fibrillation: The problem, Prevalence, Impact and Gender differences
- Risk of stroke Scoring systems
- Stroke Prevention Strategies:
 - Anticoagulation Guideline Recommendations
 - Novel Oral Anti-Coagulants (NOACs)
 - Gender Differences in Stroke Prevention Strategies
 - Left atrial appendage closure
- Conclusions

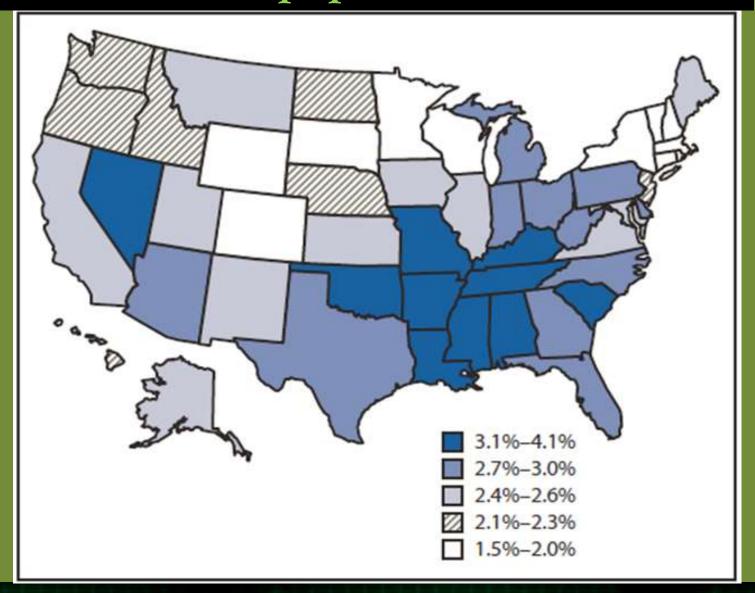


AF – A big problem

Trends in AF incidence, Olmsted county, MN

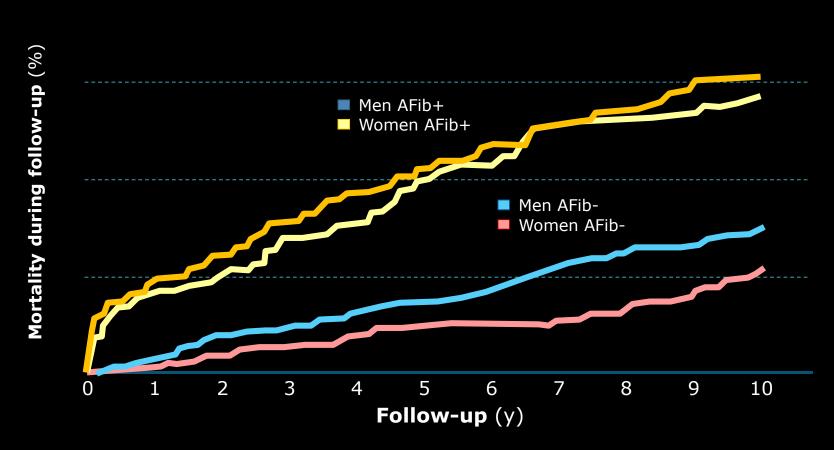

AF – The Problem

- Common 10% over age 80
- Every hour, 15 patients with AF will have a stroke (15-20% of all strokes)
- Prevalence: ~8 million in North America
- By 2050: ~16 million in America and 33 million worldwide
- 5-times increased risk of stroke (20% of all strokes are due to AF)
- AF accounted for ≈1.5% of strokes in individuals 50-59 years of age and
- ≈23.5% in those 80-89 years of age.
- AF is independently associated with mortality, heart failure, and arrhythmiainduced cardiomyopathy
- Medicare spending for new AF diagnoses has reached \$15.7 billion per year


Burden of Atrial Fibrillation

Atrial Fibrillation Hospitalization Rates/year

Stroke Prevalence Rates/population 2010



Mortality Associated with AFib

Framingham Heart Study, n=5209

The age-adjusted mortality rate attributable to AF was 6.4 per 100 000 people in 2018 (NHLBI data)

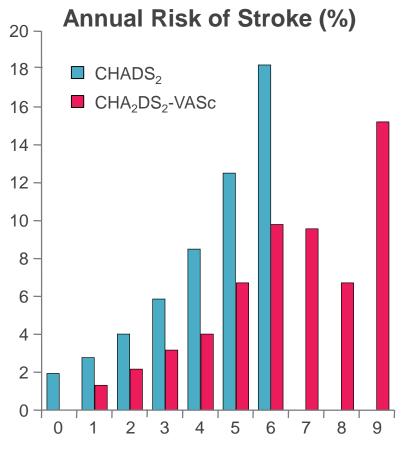
Gender and Stroke Risk in AF

- Stroke risk (RR 1.9) and systemic embolism risk from AF is higher for women
- Remains high in women despite anticoagulation (and despite adequate TTR for warfarin)
- Women were less likely to receive anticoagulation
- Women have worse functional outcome following a stroke
- Mortality after stroke remains same (~23% at 30-days)
- Bleeding risk remains the same (~1% for warfarin)
- Women with AF taking warfarin had \uparrow residual risk of CVA/SE compared with men (OR 1.279, 95% Cl 1.111 to 1.473, p = 0.001)
- No gender difference in residual risk of CVA/SE was seen in patients receiving NOAC agents (OR 1.146, 95% CI 0.97 to 1.354, p = 0.11)
- Major bleeding was less frequent in women with AF treated with NOAC

AF -Definitions

- Paroxysmal: Recurrent AF (≥ 2 episodes) that terminates spontaneously within 7 days
- Persistent: AF sustained beyond 7 days, or lasting <7 days but needing electrical/pharmacological cardioversion
- Long-standing persistent: Continuous AF > 1 year duration
- Permanent: AF in which cardioversion has either failed or not been attempted
- Overlapping patterns can be seen in the same patient.
- Non-Valvular AF: AF in the absence of moderate to severe mitral stenosis, and a mechanical heart valve

A word on Subclinical AF/AF screening


Recommendations for screening to detect AF			
Recommendation	Classa	Level ^b	
Opportunistic screening for AF by pulse taking or ECG rhythm strip is recommended in patients ≥65 years of age. 188,211,223,225	T	В	
It is recommended to interrogate pacemakers and implantable cardioverter defibrillators on a regular basis for AHRE. c224,226	1.	В	
 When screening for AF it is recommended that:^{217,218} The individuals undergoing screening are informed about the significance and treatment implications of detecting AF. A structured referral platform is organized for screen-positive cases for further physician-led clinical evaluation to confirm the diagnosis of AF and provide optimal management of patients with confirmed AF. Definite diagnosis of AF in screen-positive cases is established only after physician reviews the single-lead ECG recording of ≥30 s or 12-lead ECG and confirms that it shows AF. 	11	В	

- New-onset device-detected atrial tachyarrhythmias were observed in 23%; 3 times 个 risk of stroke; more with longer episodes (>5, OR 3.88 vs. <1 min, OR 1.77)
- Temporal relationship: The OR for stroke was the highest within a 5-day period after a qualifying AF episode (>5.5. hrs)
- Number needed to screen to identify 1 treatable new AF case varied by age: 83 for ≥65 years of age, 926 for 60 to 64 years of age, and 1089 for <60 years of age
- ILR screening post- cryptogenic stroke: 30% have AF
- To date, no studies have demonstrated that AF screening reduces mortality or incidence of thromboembolic complications.

Hindricks G et al. ESC 2020 Guidelines. European Heart Journal (2020) 00, 1;125 Belkin MN et al. Circ Arrhythm Electrophysiol. 2018

Stroke Prevention in Atrial Fibrillation

CHA₂DS₂-VASc

Risk Factor	Score
Cardiac failure	1
Hypertension	1
Age ≥75 years	2
Diabetes	1
Stroke	2
Vascular disease (MI, peripheral arterial disease, aortic atheroscleros	is) 1
Age 65-74 years	1
Sex category (female)	1
MI=r	nyocardial infarction

Total Score

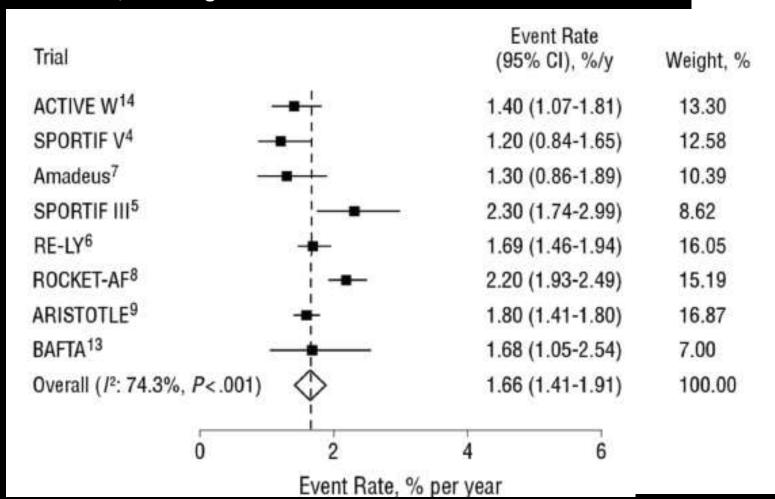
- Nonparoxysmal AF was associated with an increased risk of thromboembolism (HR, 1.38 [95% CI, 1.19-1.61]; P<0.001)
- The risk of stroke was significantly lower in patients with atrial flutter than in those with AF (HR, 0.69) [95% CI, 0.61–0.79]).

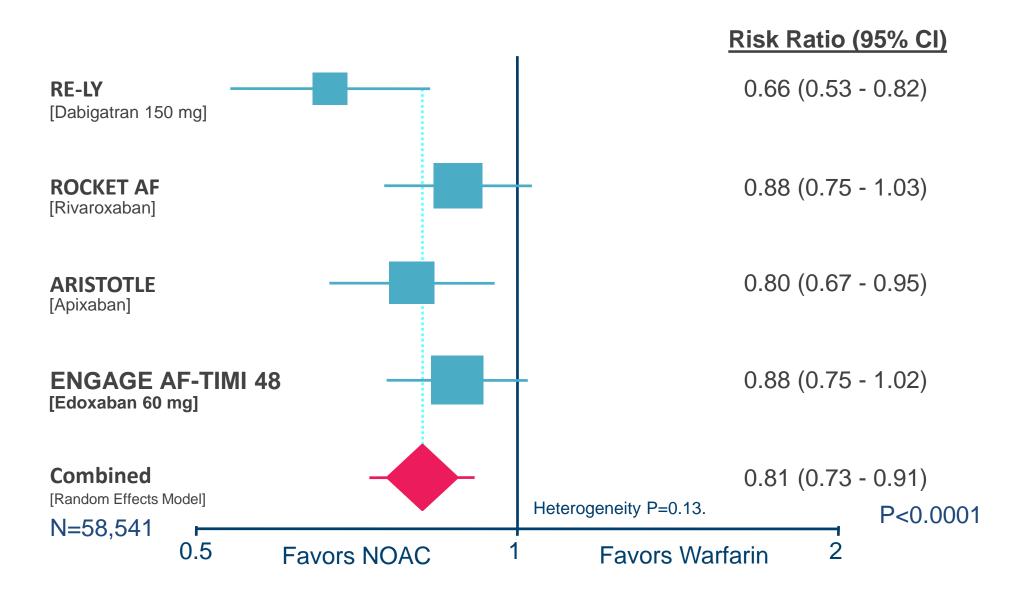
Bleeding Risk - HASBLED

Risk facto	ors and definitions	Points awarded
Н	Uncontrolled hypertension SBP >160 mmHg	1
A	Abnormal renal and/or hepatic function Dialysis, transplant, serum creatinine >200 μ mol/L, cirrhosis, bilirubin > × 2 upper limit of normal, AST/ALT/ALP >3 × upper limit of normal	1 point for each
S	Stroke Previous ischaemic or haemorrhagic ^a stroke	1
В	Bleeding history or predisposition Previous major haemorrhage or anaemia or severe thrombocytopenia	1
L	Labile INR ^b TTR <60% in patient receiving VKA	1
E	Elderly Aged >65 years or extreme frailty	1
D	Drugs or excessive alcohol drinking Concomitant use of antiplatelet or NSAID; and/or excessive alcohol per week	1 point for each
Maximum	score	9

Stroke Prevention in AF: Guideline Recommendation

- Antithrombotic therapy substantially ↓ stroke risk
- Selection of antithrombotic should be based on stroke risk, irrespective of whether AF is paroxysmal, persistent or permanent
- CHA, DS, -VASc: is recommended for assessment of stroke risk
- For CHA₂DS₂–VASc score \geq 2 (men) or \geq 3, anticoagulation is recommended
- NOACs are recommended in preference to VKAs
- If warfarin is used, a target INR of 2-3 and TTR of ≥70% is recommended
- Renal function should be evaluated prior to initiation of direct thrombin or factor Xa
 inhibitors and should be re-evaluated at least annually
- For Atrial flutter, similar recommendations apply
- OAC should be considered for stroke prevention in AF patients with a CHA2DS2-VASc score
 of 1 in men or 2 in women. Treatment should be individualized based on net clinical benefit
 and consideration of patient values and preferences




Stroke Prevention in AF: Guideline Recommendations

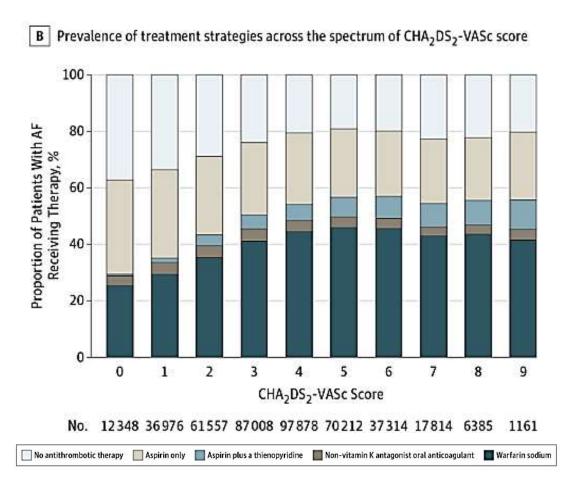
- Nonvalvular AF and a CHA2DS2-VASc score of 0 (1 in female): reasonable to omit antithrombotic therapy
- Nonvalvular AF and a CHA2DS2-VASc score of 1 (2 in female):
 OAC should be considered. Treatment should be individualized
 based on net clinical benefit and consideration of patient values
 and preferences
- Dabigatran, edoxaban and Rivaroxaban are not recommended in patients with AF and end-stage CKD or hemodialysis
- Dabigatran should not be used in patients with AF and a mechanical heart valve

Stroke reduction in AF patients treated with Warfarin: A meta-analysis

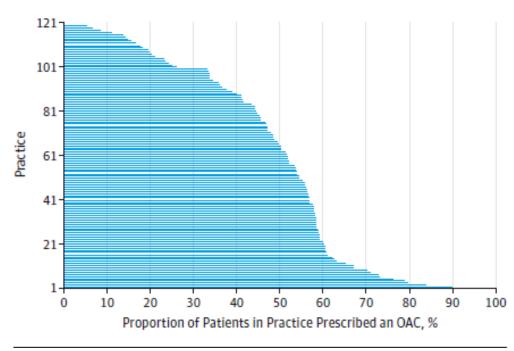
- Risk of stroke/systemic embolism in AF patients = 1.6 for warfarin
- However, TTR ranges from 50-65%

	RE-LY (Dabigatran)	ROCKET-AF (Rivaroxaban)	ARISTOTLE (Apixaban)	ENGAGE AF TIMI 48 (Edoxaban)
Efficacy % Warfarin vs. OAC (CVA or SE)	1.69 vs. 1.11 p<.001 NNT = 167 *150 mg shown	2.42 vs. 2.12 p=.12 (2.2 vs 1.7 on treatment)	1.60 vs. 1.27 p < .001 NNT = 303	1.80 vs. 1.57 p=.08 (1.5 vs. 1.18 on treatment) *High-dose (60 mg)
Major Bleeding %	3.57 vs. 3.32 p=0.31	3.45 vs. 3.6 p=0.58	3.09 vs. 2.13 p<.001	3.43 vs. 2.75 p<.001
ICH%	0.74 vs. 0.30 p< .001	0.74 vs. 0.49 p=.019	0.47 vs. 0.24 p< .001	0.85 vs. 0.39 p< .001
All-cause mortality %/yr	4.13 vs. 3.64 p = 0.051 NNT = 204	4.91 vs. 4.52 p=NS	3.94 vs 3.52 p = 0.05 NNT = 238	4.35 vs. 3.99 p=0.08 NNT = 277
Conclusion vs. warfarin	Superior efficacy, similar bleeding, less ICH	Non-inferior on efficacy and safety measures	Superior efficacy, less major bleeding and ICH, lower mortality	Non-inferior on efficacy; less bleeding

NOACs: key similarities

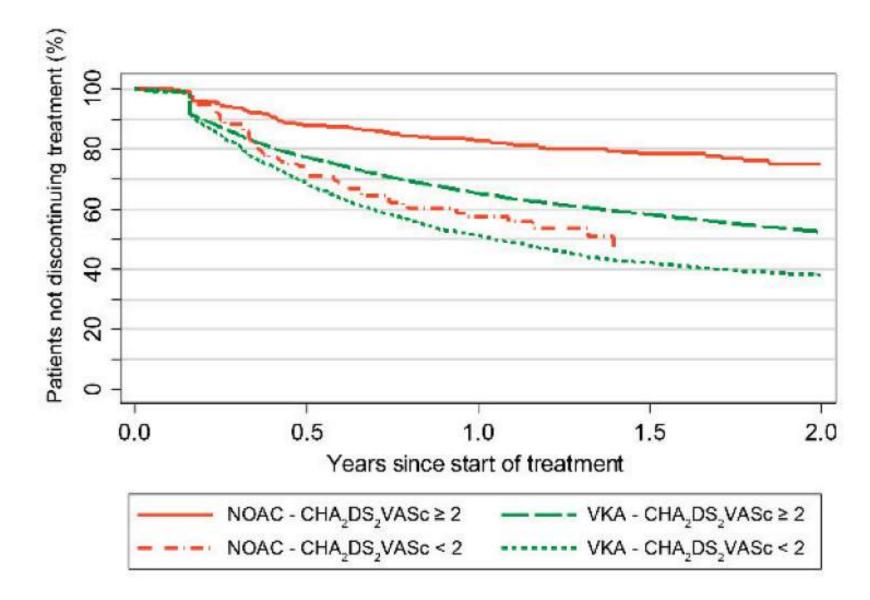

- All are noninferior to warfarin for prevention of total stroke and systemic embolism
- All reduce the risk of intracerebral hemorrhage
- Outcomes of major bleeding are generally better than with warfarin
 - Outcome differences may in part be explained by variations in dosing, study design, intrinsic risk, concurrent treatment and other factors
- Reductions in mortality are comparable and appear to be related to lower rates of cardiovascular death and fatal bleeding.

NOACs in Renal Disease


Agent	Standard AF Dose (Prescribing info)	Renal Dosing	Trial and Other Experience
Dabigatran	150mg Twice Daily (CrCl > 30ml/min)	75mg Twice Daily (CrCl 15-30ml/min)	 RE-LY trial: 150mg or 110mg BID if CrCl > 30ml/min No trial experience in pts w/ CrCl < 30ml/min 75mg dose not studied in RCTs European dosage: 150mg BID if CrCl >50ml/min 110mg BID if CrCl 30-50ml/min Contraindicated if CrCl < 30ml/min
Rivaroxaban	20mg Once Daily (CrCl > 50ml/min)	15mg Once Daily (CrCl 15-50ml/min)	 ROCKET-AF trial: 20mg Daily if CrCl > 50ml/min 15mg Daily if CrCl 30-50ml/min No trial experience in pts w/ CrCl < 30ml/min
Apixaban	5mg Twice Daily	2.5mg Twice daily if at least 2 of the following: ≥ 80 y/o, Weight ≤ 60kg, SCr ≥ 1.5ml/dL Dosing guidance for ESRD (with or without hemodialysis)	 ARISTOTLE trial: Renal dose studied as per prescribing information. No trial experience in pts w/ CrCl < 25ml/min No trial experience with ESRD patients
Edoxaban	60mg Once Daily (CrCl 50-95ml/min) BLACK BOX WARNING: Avoid use if CrCl > 95ml/min	30mg Once Daily (CrCl 15-50ml/min)	 TIMI-ENGAGE: Randomized to 60mg or 30mg Daily Dose halved if CrCl 30-50ml/min, Weight ≤ 60kg, or Concomitant verapamil, quinidine, or dronedarone (strong P-gp inhibitors) No trial experience in pts w/ CrCl < 30ml/min Worse outcomes in patients with CrCl > 95ml/min

- Among patients with atrial fibrillation and CrCl 25 to 30 mL/min, apixaban caused less bleeding than warfarin
- Even greater reductions in bleeding than in patients with CrCl >30 mL/min.

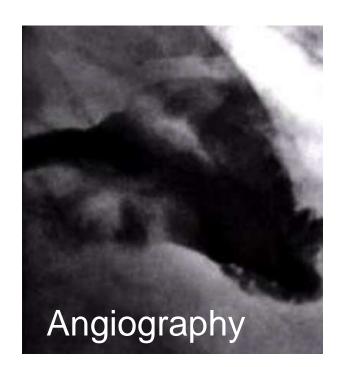
Challenges With Oral Anticoagulation (OAC)



- Bleeding risk
- Drug and diet interactions (VKA)
- Non-adherence
- Issues with monitoring (VKA)

OAC Adherence

NOACs better than VKA but still ~30% of NOAC patients stop taking the drug at 2 years

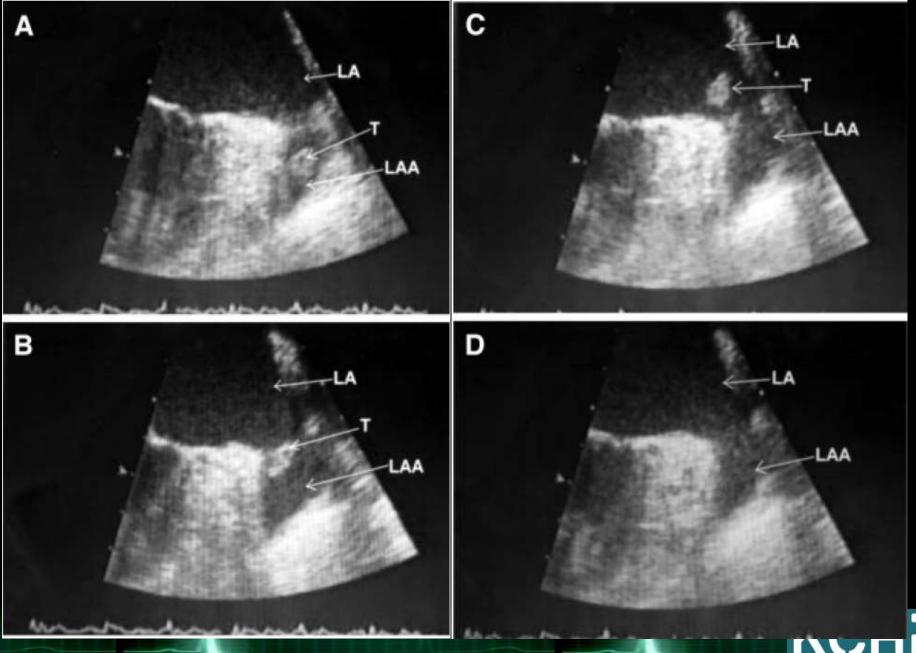


Warfarin Ineligible Patient: ROAR Study

- Multicenter study (n=263)of the use of direct oral antagonists (DOACs) in Warfarin ineligible (major bleed or stroke) patients
- ♦ 63% (166 of 263) patients had a repeat major bleed on DOACs
- ♦ Repeat major bleed was significantly higher in patients with prior gastrointestinal bleeding (74.5% vs. 30%, P < 0.0001)
 </p>
- Five percent (12 of 263) developed repeat stroke/TE
- ♦ 34% (57 of 166) of patients had an intervention to manage repeat major bleed

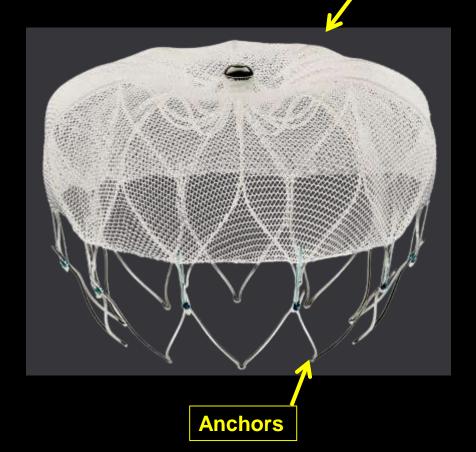
Beigel et al.: JACC Img. 2014;7(12):1251-1265

Left Atrial Appendage: What Does It Do?


- Major source or AF-related cardiac thromboembolism (91%) in non-valvular AF
- LAA source of focal firing & AF triggers in 27% of AF patients undergoing re-do ablation

Left Atrial Appendage: What does it do?

- Conduit, reservoir and neurohormonal
- Major source or AF-related cardiac thromboembolism (91%) in non-valvular AF
- Complex architecture with pectinates facilitate slow conduction and arrhythmogenecity, especially when fibrosis present
- ♦ LAA source of focal firing & AF triggers in 27% of AF patients undergoing re-do ablation



52 year-old Female with Persistent **Atrial** Fibrillation Undergoing TEE

WATCHMANTM Left Atrial Appendage Closure (LAAC) Device Overview

160 Micron Membrane

Nitinol Frame

- Radially expands to maintain position in LAA
- Available sizes:
 - 21, 24, 27, 30, 33 mm (diameter)
- 10 Active fixation anchors around device perimeter engage LAA tissue for stability and retention

160 Micron Membrane

- Polyethylene terephthalate (PET) cap
- Designed to block emboli from exiting the LAA

LAAC Indications: US vs International

US (CMS)- WATCHMANTM

- **⋄ NVAF**
- **♦ CHADS2VASC≥ 3**
- ♦ Suitable for short-term warfarin but appropriate rationale exists to seek non-pharmacologic alternative to long-term OAC
- Formal shared decisionmaking with an independent noninterventional physician

International

- ♦ LAAC is intended to prevent thrombus embolization from the LAA and reduce the risk of life-threatening bleeding events in patients with NVAF who are eligible for OAC (IIb B)
- Or who have a contraindication to anticoagulant therapy
 (IIBC)

LAA Closure – Indications (AHA/ACC/HRS 2019 & ESC Guidelines 2020)

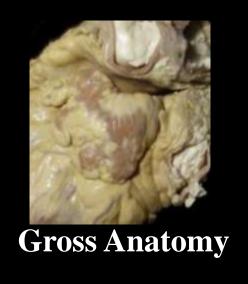
Section 4.4.1 - Percutaneous Approaches to Occlude the Left Atrial Appendage

Percutaneous LAAO should be considered for those AF patients at an increased risk of stroke who have contraindications to long-term anticoagulation and who are at high risk of thromboembolic events.

Recommendations for occlusion or exclusion of the LAA LAA occlusion may be considered for stroke prevention in patients with AF and contraindications for long-term anticoagulant treatment (e.g. intracranial bleeding without a reversible cause). Surgical occlusion or exclusion of the LAA may be considered for stroke prevention in patients with AF undergoing cardiac surgery. LIB B C

Rationale to seek non-pharmacologic alternative

- Major bleeding from OAC
- Inability to maintain INR/Non-compliance/refuses OAC
- Medical condition, occupation, or lifestyle placing patient at high risk of major bleeding secondary to trauma
- ♦ HASBLED score ≥3
- ♦ Fall risk
- CAD patients needing triple therapy



LAA anatomy is complex- Windsock

Courtesy: Dr Marcus Stoddard

Cardiac CT

Angiography

Beigel et al.: JACC Img. 2014;7(12):1251-1265

LAA anatomy is complex- Chicken Wing

Endocast

TEE

Gross Anatomy

Angiography

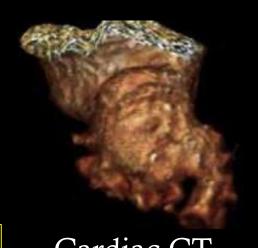
Cardiac CT

Beigel et al.: JACC Img. 2014;7(12):1251-1265

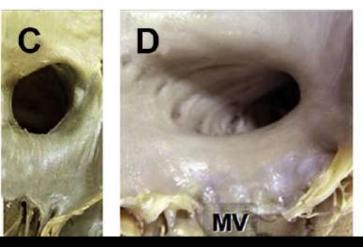
LAA anatomy is complex- Cactus

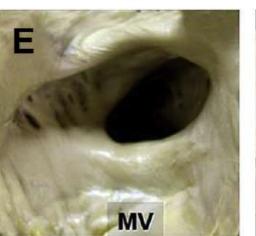
Endocast

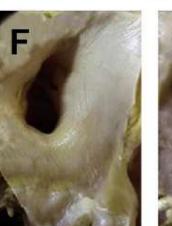
Angiography


TEE

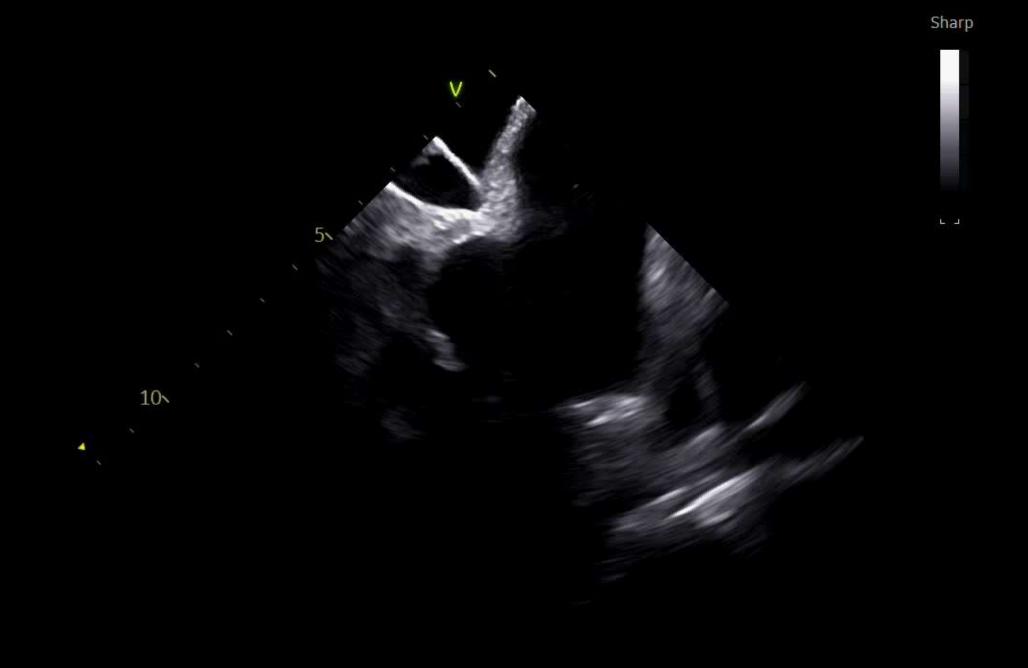
Gross Anatomy

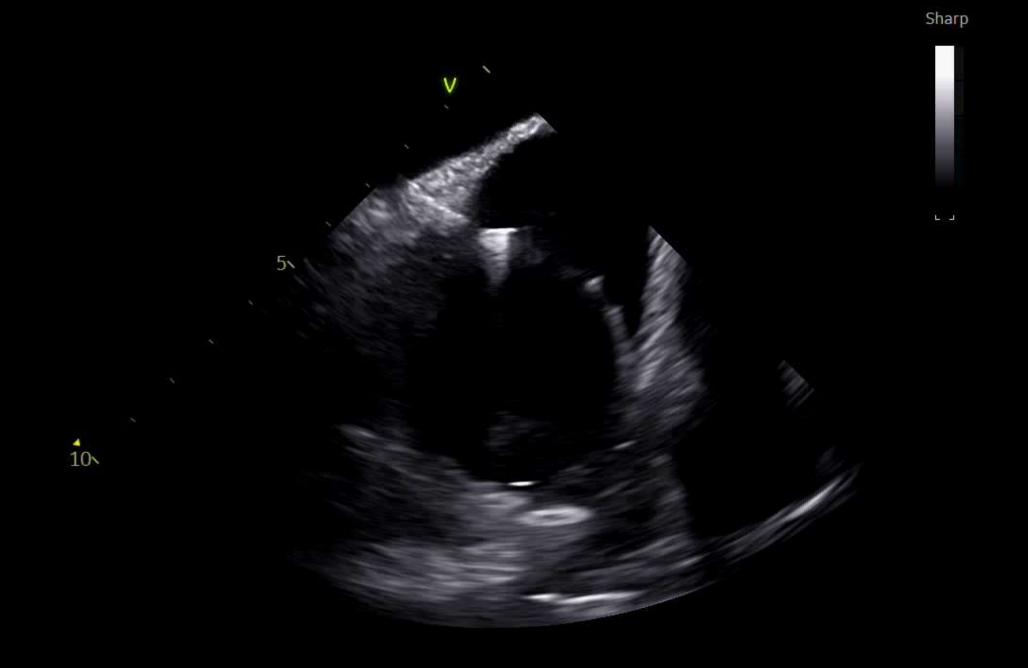


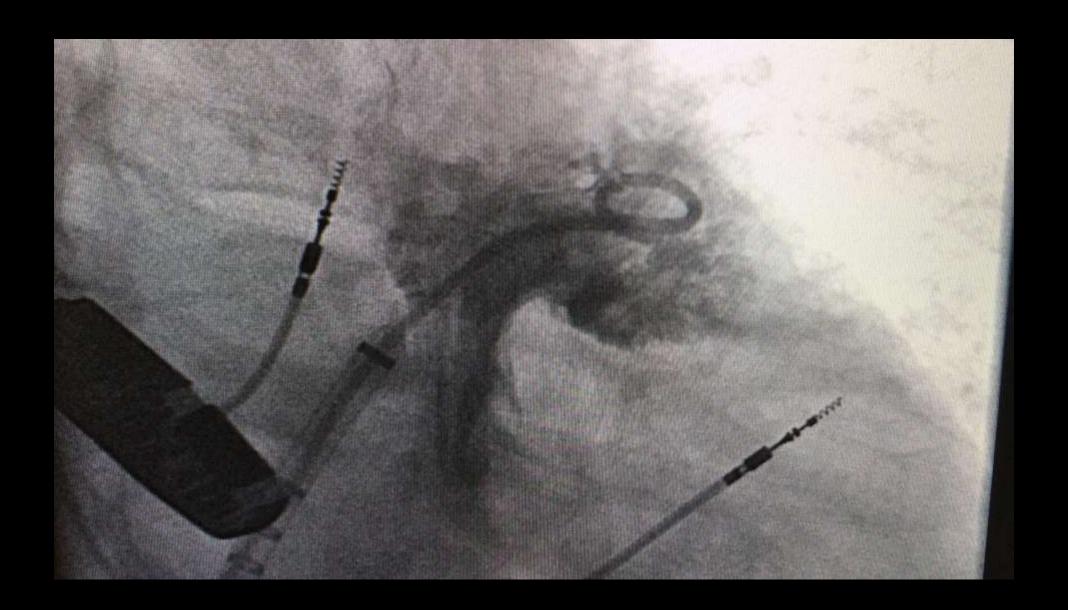

Cardiac CT

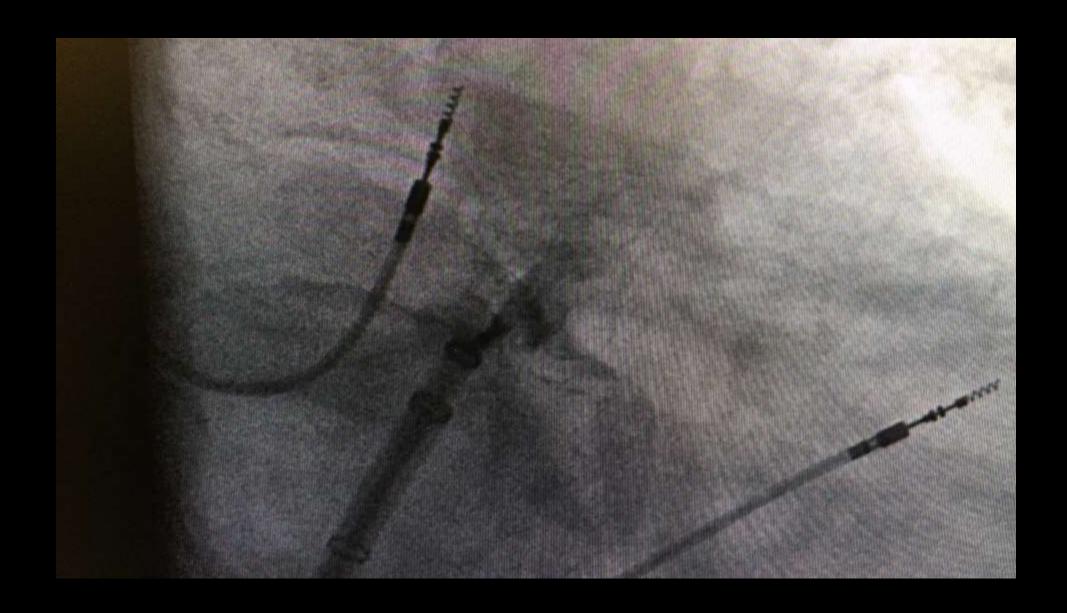

LAA Ostial Variations

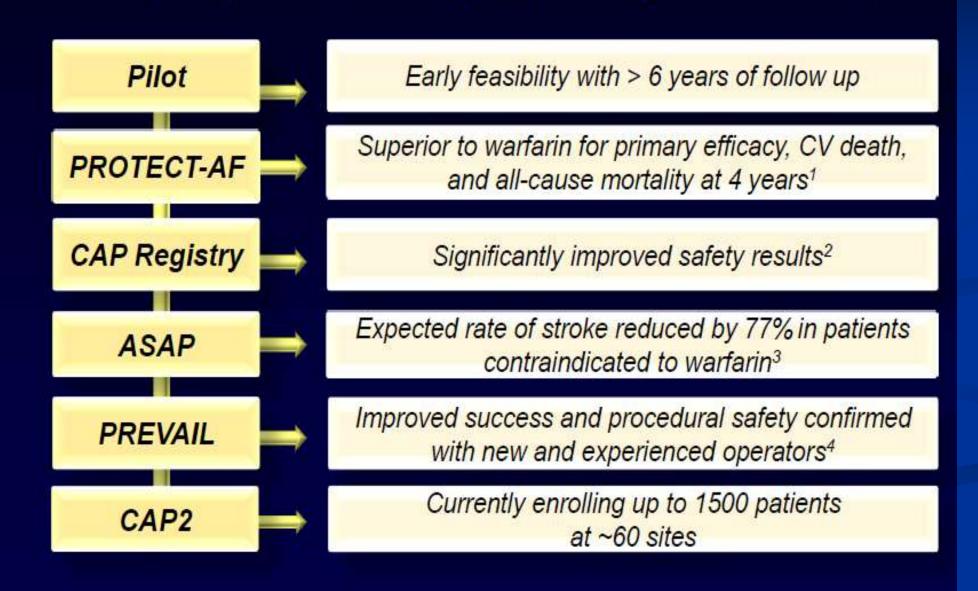






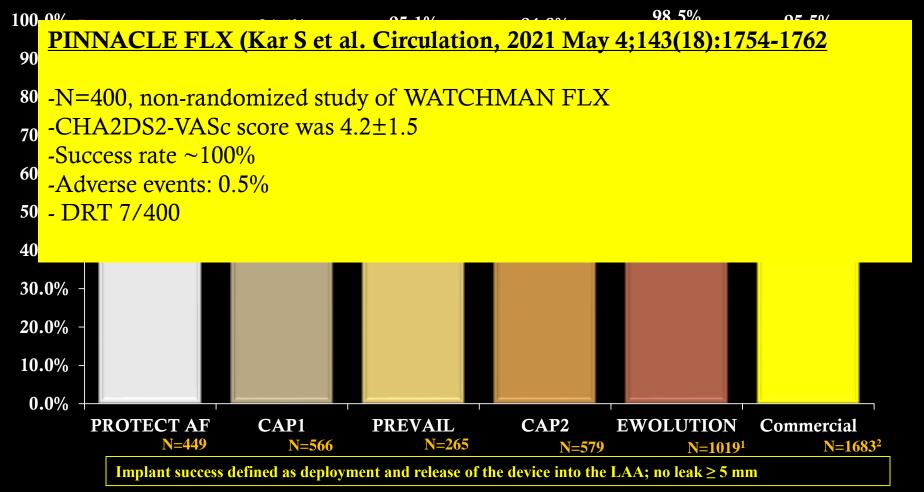




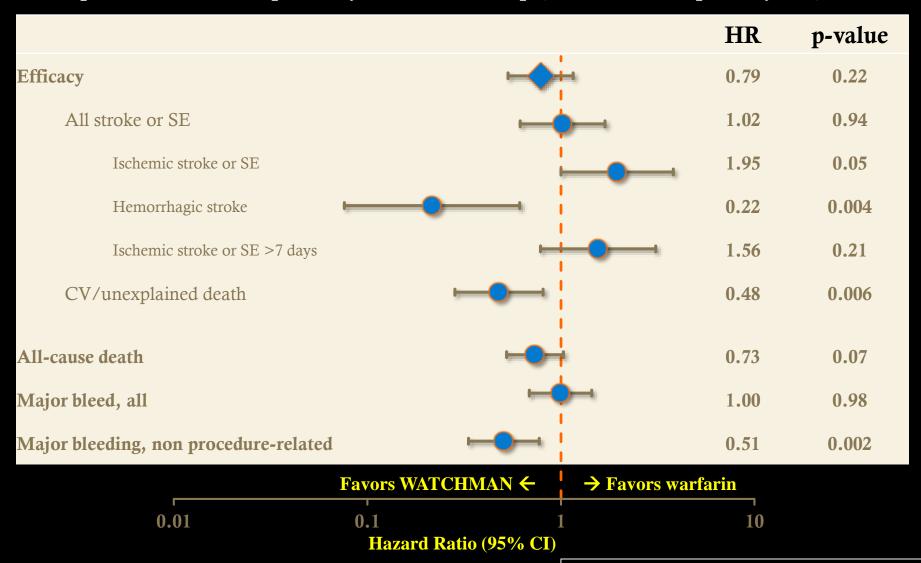


Efficacy and Safety Data

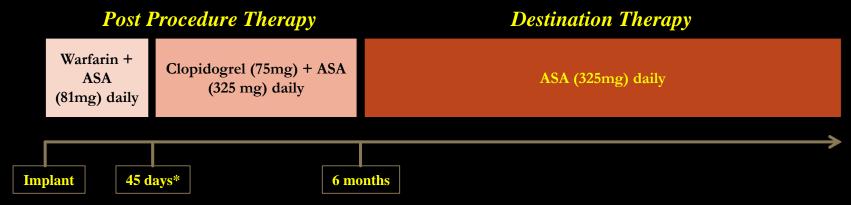
WATCHMAN Clinical History


Over 2,000 patients with 4,800 patient years follow-up

Procedural Success


~50% new operators

~70% new operators


Patient-Level Meta-analysis of PROTECT AF, PREVAIL, and CAP Registries

2406 patients with 5931 patient-years of follow-up (Mean follow-up 2.69 years)

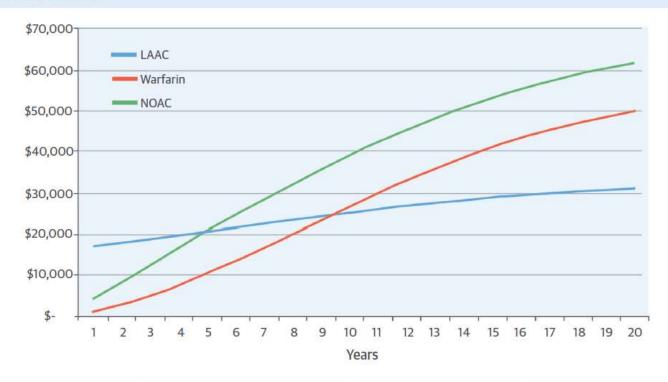
Observed Rates of Major Bleeding Over Time According to Treatment Group

*if leak >5mm, patients remained on warfarin + ASA until seal documented, skipping the clopidogrel + ASA pharmacotherapy

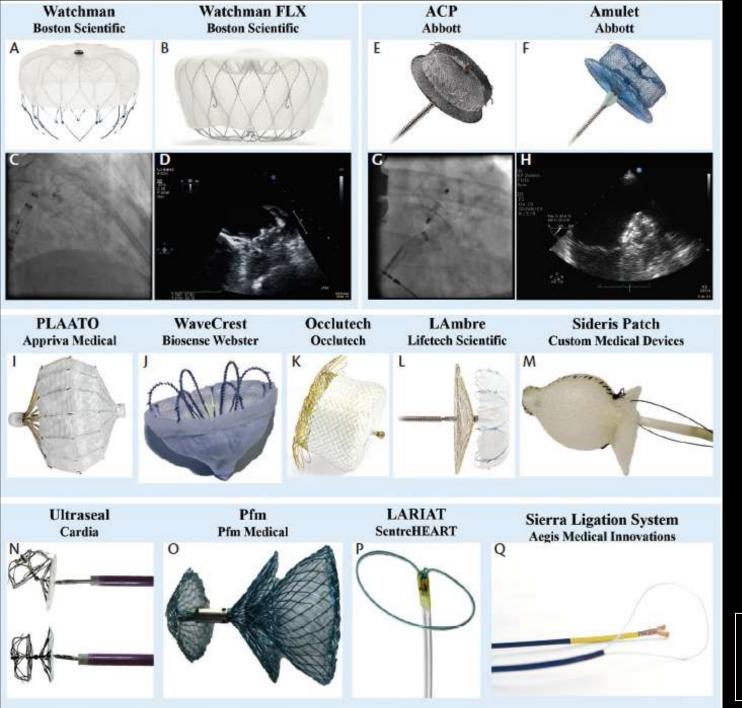
	LAAC (n=732)		Long-tern (n=	Rate	P	
	Bleeding Rate (n events / N at risk)	Event Rate per 100 pt-yrs (n events / N at risk)	Bleeding Rate (n events/N at risk)	Event Rate per 100 pt-yrs (n events / N at risk)	Ratio	value
Overall	10.8 (79/732)	3.5 (79/2268)	11.3 (43/382)	3.6 (43/1187)	0.96	0.84
Post Procedure	5.9 (40/682)	1.8 (40/2255)	11.3 (43/381)	3.6 (43/1180)	0.49	0.001
Destination	3.2 (19/601)	1.0 (19/1958	9.7 (35/360)	3.5 (35/1004)	0.28	<0.001

Overall period defined as after randomization to the end of follow-up; post-procedural period as >7 days after randomization to the end of follow-up; destination therapy period as beyond 180 days post-randomization, when patients assigned to LAA closure were eligible to receive aspirin alone.

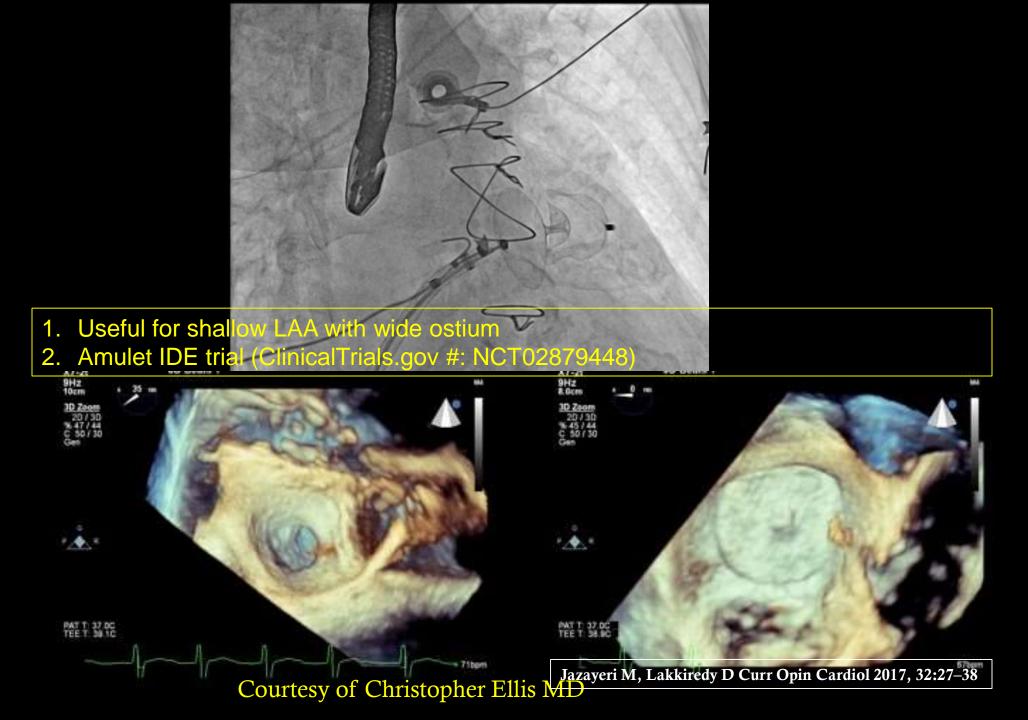
LAAC in Patients with Absolute OAC Contraindication

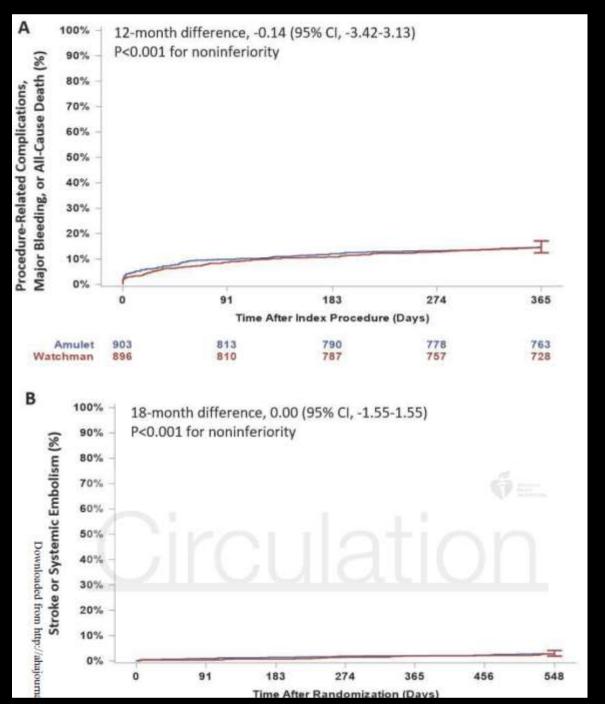

- ♦ ASAP Study (Multicenter observational; n=150)
- ♦ Warfarin ineligible (hemorrhagic/bleeding tendencies in 93%); CHADS2VASC 4.4 ±1.7
- ASAP –TOO RCT prematurely terminated due to poor enrollment

	Entire Cohort Events/Patient-Years* 8/175.0 (4.6%)			
Primary efficacy				
Death, all cause	9/180.0 (5.0%)			
All stroke	4/176.0 (2.3%)			
Ischemic stroke	3/176.9 (1.7%)			
Hemorrhagic stroke	1/179.1 (0.6%)			



Cost-Effectiveness


CENTRAL ILLUSTRATION Warfarin Versus NOACs Versus LAAC: Cumulative Cost and Time to Cost-Effectiveness Following Treatment Initiation



	Time to Clinical Effectiveness (Incremental QALYs)	Time to Cost-Effectiveness (Cost per QALY)	Time to Dominance (More Effective, Less Costly)
LAAC vs. warfarin	Year 3 (0.015)	Year 7 (\$42,994/QALY)	Year 10
NOACs vs. warfarin	Year 1 (0.008)	Year 16 (\$48,446/QALY)	N/A
LAAC vs. NOACs	Year 5 (0.007)	Year 5 (Dominant)	Year 5

Asmarats L et al. Cardiac interventions today may/june 2018 vol. 12, no. 3

AMULET IDE Trial

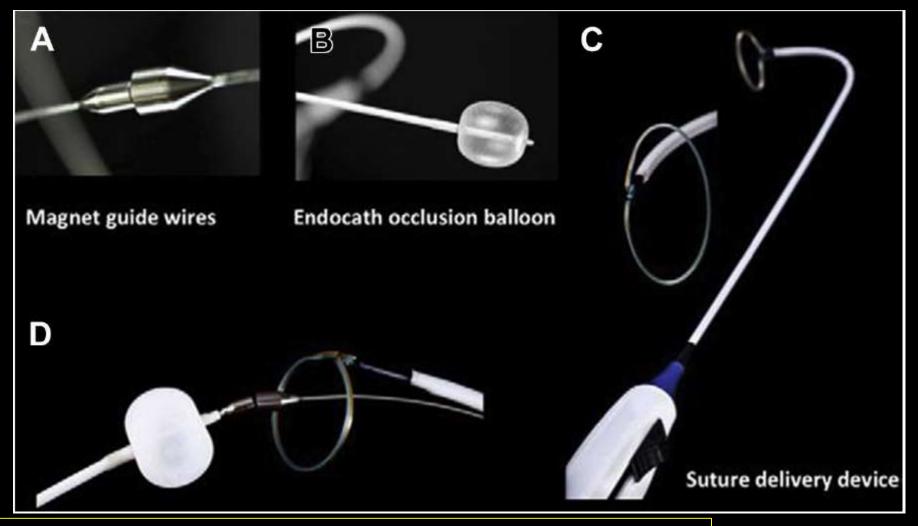
- ♦ The Amulet occluder was non-inferior for safety and effectiveness of stroke prevention for NVAF compared with the Watchman device, and superior for LAA occlusion (↓ leaks).
- Procedure-related complications were higher with the Amulet device (pericardial effusions and device embolization) and decreased with operator experience.

Conclusions

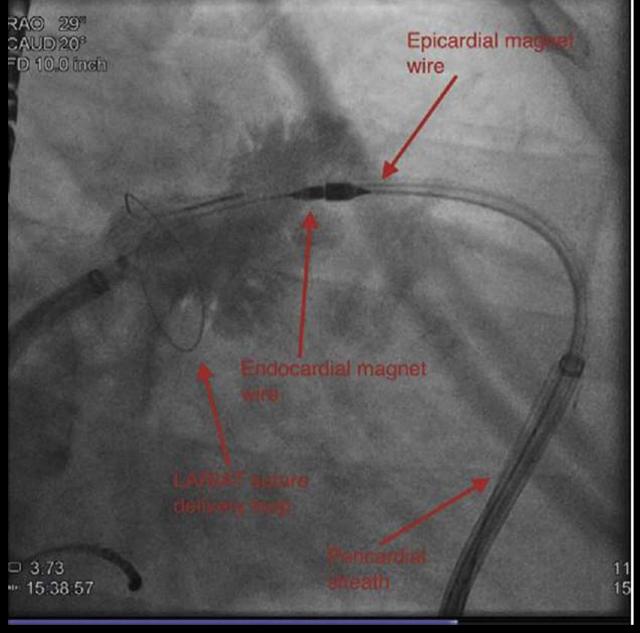
- AF in increasing in incidence and prevalence
- Substantially increases risk of stroke and thromboembolism (accounts for ~20% for all strokes)
- Highly effective therapies are available to prevent or reduce the risk for stroke in patients with AF
- NOACs are preferred over warfarin for stroke prevention in non-valvular AF
- Compared to warfarin, target specific oral anticoagulants are: a) at least as good at preventing stroke, b) substantially reduce risk of intracranial hemmorhage, and c) may be associated with improved survival
- Many issues need to be considered: Bleeding risk, renal disease, drug interactions, cost, compliance, patient preferences etc.

Conclusions

- A significant proportion of NVAF patients who need OAC are either not on it or cannot take it long-term
- LAA is primary source for NVAF-related thromboembolism
- Percutaneous LAAC is an established alternative to anticoagulation in patients with NVAF at high risk for bleeding or having contraindications to OAC
- ❖ WATCHMAN™ and Amulet ™: FDA-approved percutaneous LAAC devices in the US
- Indication: Moderate to high risk of stroke with appropriate rationale to seek alternative to long-term anticoagulation
- ❖ Randomized trials have proved efficacy and safety of Watchman compared to warfarin → Equivalent for total stroke; superior for hemorrhagic stroke and cardiovascular mortality. Amulet equivalent to watchman for efficacy & safety


Thank you!

Contact Info: Email: rakesh.gopinathannair@h cahealthcare.com Twitter: @drrakeshg1 Cell: 301-641-6062



Supplementary Slides

LARIAT Suture Delivery System

- 1. Advantageous in patients with absolute contraindication to OAC
- 2. Electrical isolation of LAA may provide arrhythmic benefit

AMAZE trial: Evaluating the efficacy of LAA ligation along with pulm vein isolation for long-standing persistent AF

Device	Advantages	Limitations	Current status	Future
WATCHMAN	- Most data - 2 Randomized studies and registry data	 Unsuitable for shallow, wide appendage Need for OAC or DAPT post-op 	FDA approved CE Mark	 Trial comparing against NOACs (OCCLUSION-AF) Management of leaks and DRT Use with DAPT only (In absolute OAC CI) Post-AF ablation (OPTION) Alternative to OAC as first line (CHAMPION-AF) Post-TAVR (WATCH-TAVR)
AMULET	 Shallow, wide appendages Lobe & Disc design can account for ostial variation 	- DAPT post-op	CE Mark FDA Approved	 AMULET-IDE (LBCT at ESC2021) CATALYST (Alternative to OAC as first line)
LARIAT	 Can be used in patients with absolute CI to OAC LAA Electrical isolation 	 Technically challenging procedure Limited by LAA anatomy & prior surgery 	 FDA 510 K FDA safety communication 	 Randomized data for use in persistent AF ablation (AMAZE) Improving procedural safety

Anti-thrombotic therapy after left atrial appendage occlusion

Device/patient	Aspirin	OAC	Clopidogrel	Comments
Watchman/low bleeding risk	75 - 325 mg/day indefinitely	Start warfarin after procedure (target INR 2-3) until 45 days or continue until adequate LAA sealing is confirmed by TOE NOAC is a possible alternative	Start 75 mg/day when OAC stopped, continue until 6 months after the procedure	Some centres do not withhold OAC at the time of procedure (no data to support/deny this approach)
Watchman/high bleeding risk	75 - 325 mg/day indefinitely	None	75 mg/day for 1 - 6 months while ensuring adequate LAA sealing ^a	Clopidogrel often given for shorter time in very high-risk situations
ACP/Amulet	75 - 325 mg/day indefinitely	None	75 mg/day for 1 - 6 months while ensuring adequate LAA sealing ^a	Clopidogrel may replace long-term aspirin if better tolerated

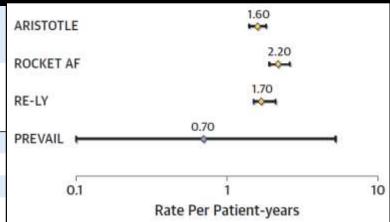
PROTECT AF

- ♦ 707 NVAF patients (n=463 to WATCHMAN and n=244 to Warfarin)
- Efficacy Primary composite endpoint of stroke, cardiovascular death, and systemic embolism
- 88% had successful implant; 86% successfully discontinued warfarin at 45 days
- ♦ At 1065 Pt-years follow-up:

Efficacy - 3% vs. 4.3% for warfarin; RR 0.62, 95% CI 0.35-1.25

Safety - 7.4% vs. 4.4% for warfarin; RR 1.69; 95% ci 1.01-3.19

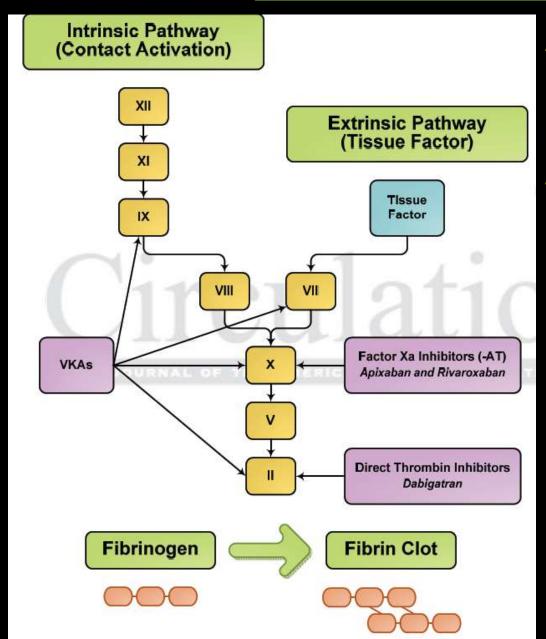
- ♦ Pericardial Effusion 4.8%; Major bleeding 3.5%
- Met non-inferiority for primary efficacy endpoint


PREVAIL

Holmes DR et al. J Am Coll Cardiol 2014;64:1–12

- ♦ 407 patients in a 2:1 randomization to Watchman vs. Warfarin
- ♦ 25% of patients treated by new operators
- ♦ Implant Success: 95% had successful implant
- Watchman did not meet primary efficacy endpoint (0.063 vs 0.064%; RR1.07; 95% Crl: 0.57-1.89)
- ♦ 2.2% early safety events (non-inferior to warfarin)

	Device Group			Control Group			
	No. of Events	% of Subjects	% of Endpoints	No. of Events	% of Subjects	% of Endpoints	
Ischemic stroke	5	1.9	35.7	1	0.7	25.0	
Hemorrhagic stroke	1	0.4	7.1	0	0.0	0.0	
Death (cardiovascular/unexplained)	7	2.6	50.0	3	2.2	75.0	
Systemic embolism	1	0.4	7.1	0	0.0	0.0	



Watchman – Contraindications

- LAA thrombus
- Unfavorable LAA anatomy
 - Shallow, wide LAA
 - LA ostial size > 31 mm
- Absolute contraindication for OAC: Cannot take warfarin or ASA/Clopidogrel

Novel Oral Anticoagulants

Better than Warfarin:

- 1. Dabigatran 150 mg twice daily
- 2. Rivaroxban 20 mg PO daily
- 3. Apixaban 5 mg PO twice daily

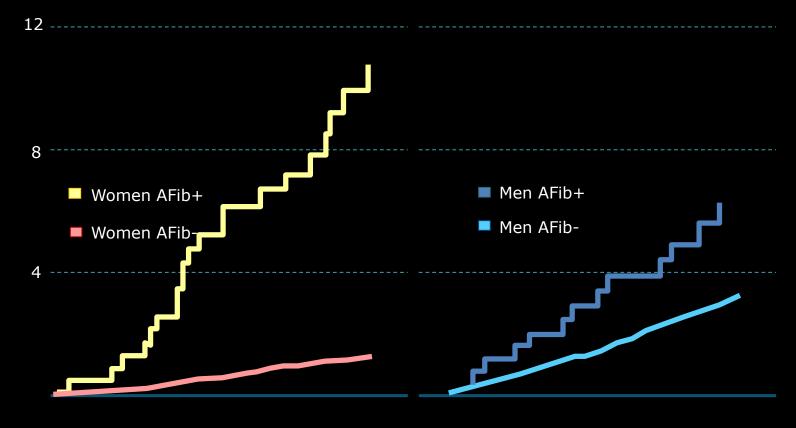
Less major bleeding than Warfarin:

- Dabigatran 110 mg twice daily
- 2. Apixaban 5 mg PO twice daily

Use in ESRD/Dialysis:

Apixaban 5 mg PO twice daily

Survival Benefit:


Apixaban 5 mg PO twice daily

Dialyzable:

Dabigatran

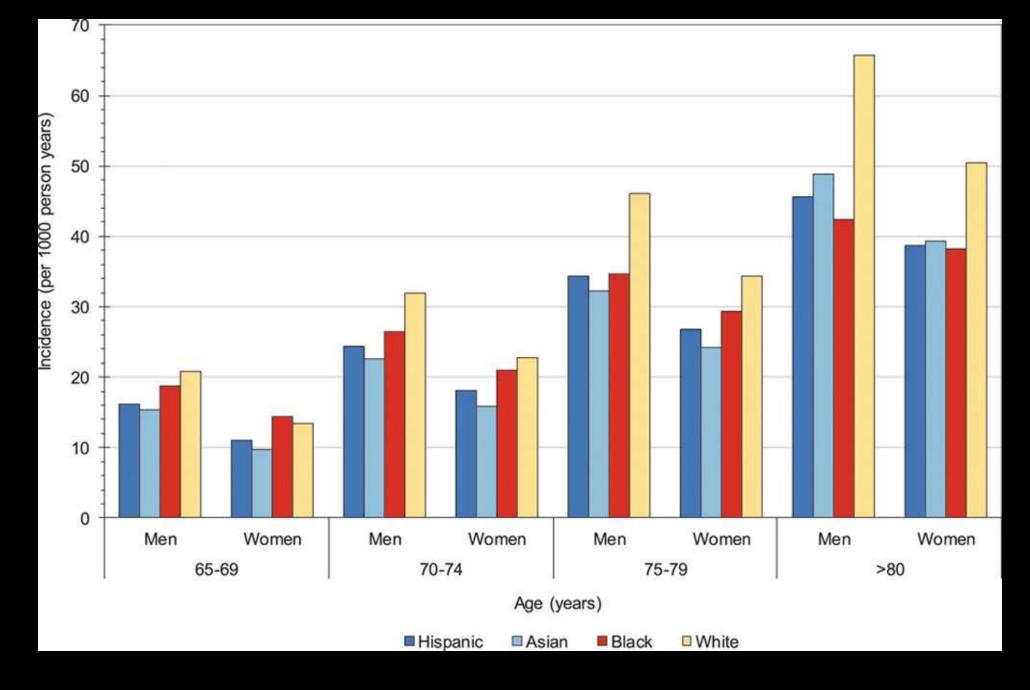
AF is Responsible for 15-20% of all Strokes

Non-valvular AFib is responsible for a 5-fold increase in the risk of ischemic stroke

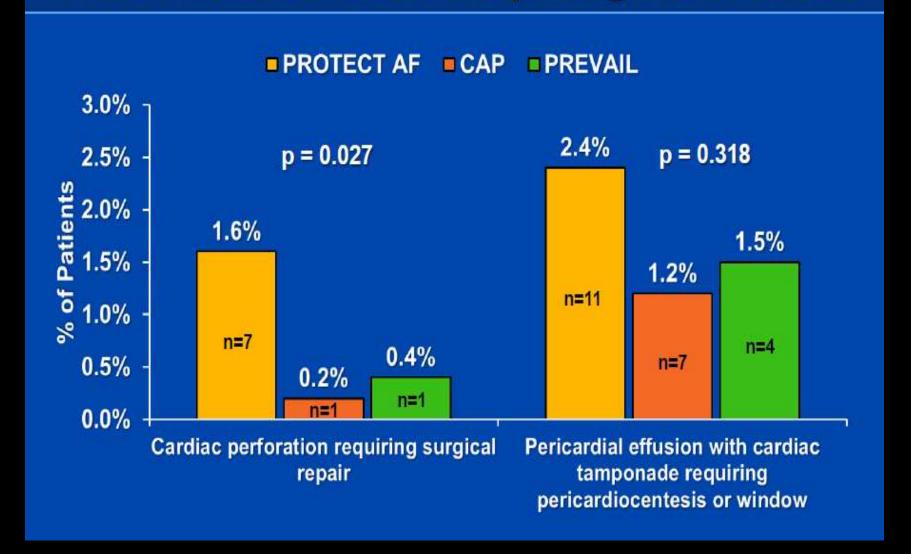
Years of follow-up

Incidence of AFib in the General Population – Gender Differences

Olmsted County study

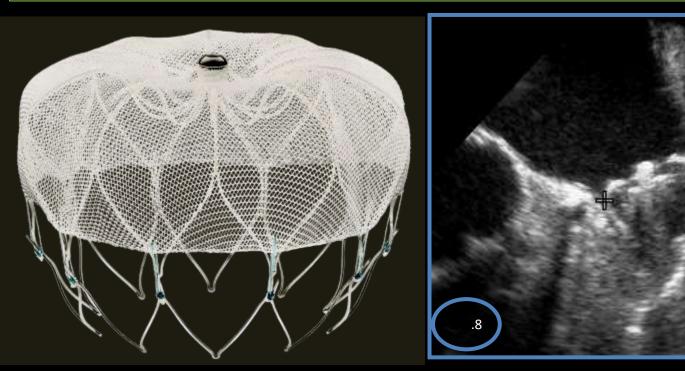

Observational period: 20 years

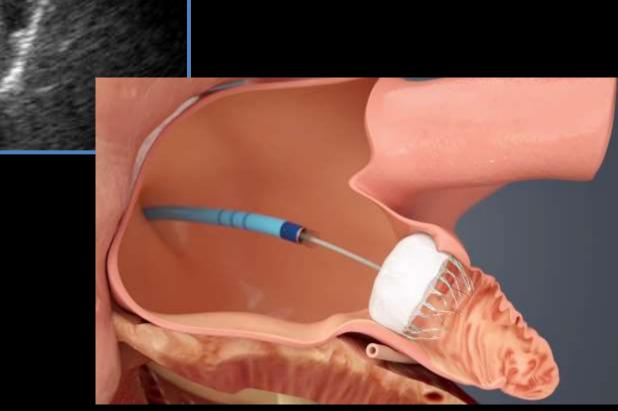
Men 0.49 %

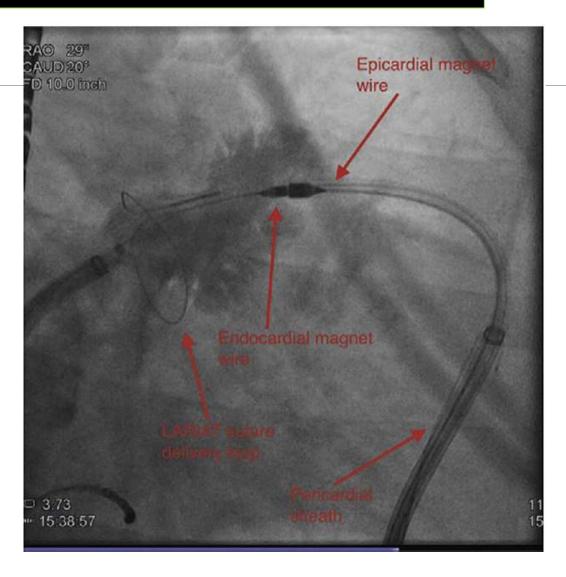

Women 0.28 %

Ratio men to women = 1.86

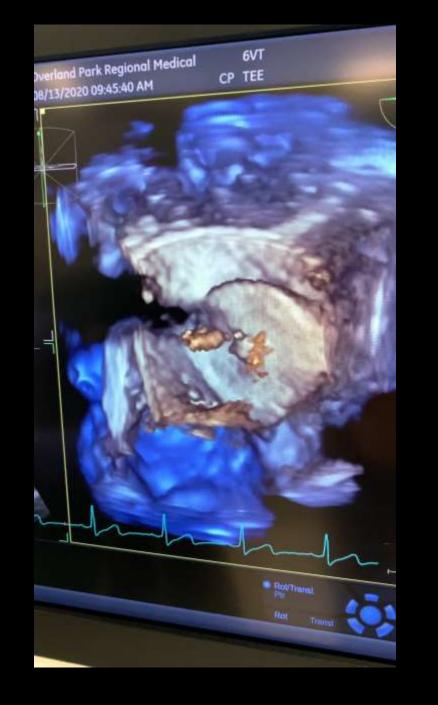
The lifetime risk of AF in men and women over 40 years of age: 1 in 4




Pericardial Effusions Requiring Intervention

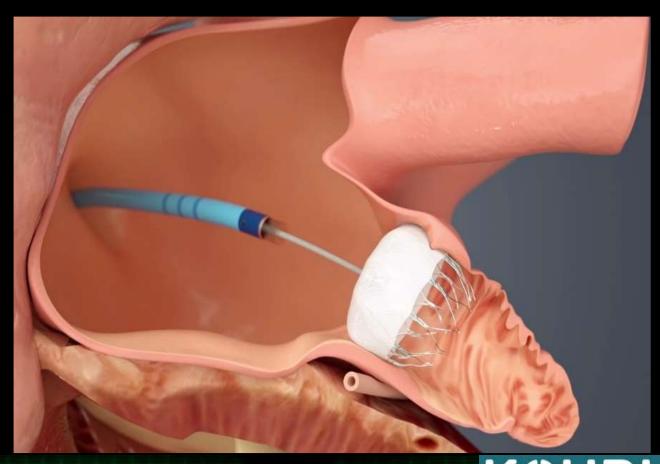

Left Atrial Appendage closure for Stroke Prevention

Left Atrial Appendage closure for Stroke Prevention

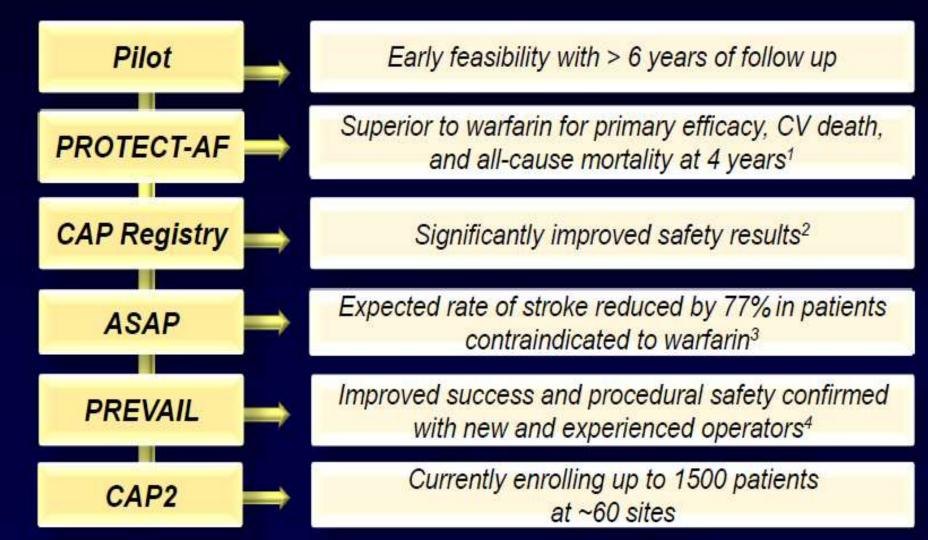


Wa

nulet



WATCHMANTM Procedure

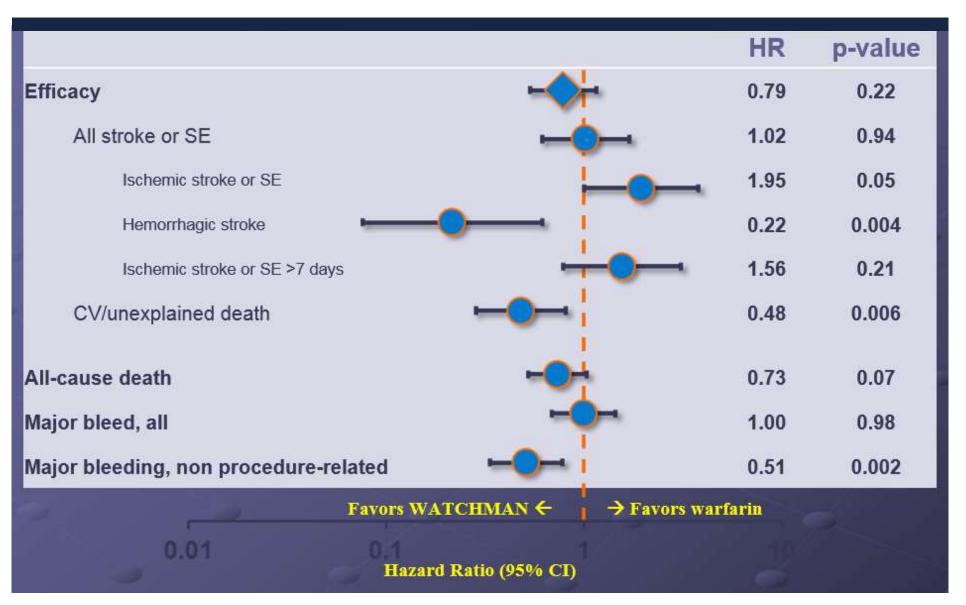

- One-time implant
- Performed in a cardiac EP Lab
- Performed by a heart team
 - EP or IC with transseptal and structural experience, 1 expert echocardiographer, general anesthesia, surgical back up, WATCHMAN Clinical Specialist
- Transfemoral Access: 14 F WATCHMAN Sheath advanced to the LAA via the femoral vein
- 1 hour procedure I 1 day hospital stay

Watchman Clinical Studies

Over 2,000 patients with 4,800 patient years follow-up

Procedural Success and Risks: Commercial Experience

	Aggregate Clinical Data
Procedural Parameters	
No. of Procedures	6,720
Implantation Success, %	94.9%


	Aggregate Clinical Data
Complication Rates	
Periodical Tamponade	1.28%
Procedure-Related Stroke	0.18%
Device Embolization	0.25%
Procedure-Related Death	0.06%

Shah RU, Freeman JV, et al. JACC. 2012;59(2):143-149. Reddy VY, Gibson DN, et al. JACC. 2016

Patient-Level
Meta-analysis
of PROTECT
AF, PREVAIL,
and CAP
Registries

2,406 patients with 5,931 patient years of follow up. (Mean follow up 2.69 years)

Cost Effectiveness

- Both NOACs and LAAC
 with the Watchman
 device were cost-effective
 relative to warfarin
- Only LAAC demonstrated cost savings by year 10 relative to warfarin, and by year 5 relative to NOACs

LAAC - Market Capture & Growth Opportunities

- At present, LAAC with WATCHMAN captures only 1% of the market in which it is indicated
- Tremendous room to improve patient care in this population
- Several new devices in horizon
- Expansion of indications with more data

LAAC – Summary

- A significant proportion of NVAF patients who need OAC are either not on it or cannot take it long-term
- LAA is primary source for NVAF-related thromboembolism
- Percutaneous LAAC is a promising alternative to anticoagulation in patients with NVAF at high risk for bleeding or having contraindications to OAC
- WATCHMAN: Only FDA-approved percutaneous LAAC device in the U.S. and has the most data
- Indication: Moderate to high risk of stroke with appropriate rationale to seek alternative to long-term anticoagulation
- Randomized trials have proved efficacy and safety of WATCHMANN compared to warfarin → Equivalent for total stroke; superior for hemorrhagic stroke and cardiovascular mortality
- Trials are underway to assess LAAC as first line therapy instead of OAC

