Hereditary Transthyretin Amyloidosis Identification and Diagnosis

Michel Khouri, MD Associate Professor of Medicine Duke University Medical Center

- Consulting: Pfizer, Inc.
- Advisory Board: Alnylam Pharmaceuticals, Inc.; Eidos Therapeutics, Inc.
- Speakers Bureau: Alnylam Pharmaceuticals, Inc.
- Research (Institutional): Pfizer, Inc.; Alnylam Pharmaceuticals, Inc.; Eidos Therapeutics, Inc.; Ionis-Akcea, Inc.

THE OPINIONS EXPRESSED IN THIS PRESENTATION (AND/OR SLIDES) ARE SOLELY THOSE OF THE PRESENTER AND NOT NECESSARILY OF THE AMERICAN HEART ASSOCIATION / AMERICAN STROKE ASSOCIATION (AHA/ASA). THE AHA/ASA DOES NOT ENDORSE ANY SPECIFIC PRODUCTS OR DEVICES.

Marrican Heart Association. Outline

- Overview and Prevalence of Hereditary ATTR
- Clinical Features
- Clinical Presentations
- Diagnosing Hereditary ATTR
- Future Directions

Overview and Prevalence of Hereditary ATTR

Amyloid comes in a variety of "flavors"

- Amyloidosis is a disorder of protein folding
- Misfolded proteins deposit in organs resulting in organ dysfunction
- AL & ATTR most common (~95%) cardiac involvement

Amyloid protein	Precursor	Main features	Myocardial involvement
AL	Immunoglobulin light chain	Primary/myeloma associated	Frequent
ATTR	Transthyretin	Familial	Variable according to genotype
ATTR	Transthyretin	Wild type	Constant
AApo AI	Apolipoprotein AI	Familial	Occasional but severe
AApo AII	Apolipoprotein AII	Familial	Exceptional
AFib	Fibrinogen α chain	Familial	Exceptional
ALys	Lysozyme	Familial	Exceptional
AA	Serum AA	Secondary, reactive	Exceptional
Α β2 Μ	β2 microglobulin	Hemodyalisis associated	Exceptional
IAA	Atrial natriuretic factor	Atrial fibrillation	Atrial tissue

Adapted from Rubin, et al. Annu. Rev. Med. 2020. 71:203-19

Meritan Association. TTR: Structure & Physiologic Binding

- Transthyretin (**Prealbumin**) $\underline{\text{trans}}$ ports $\underline{\text{thy}}$ roxine (T_4) and retinol (Vit A) in plasma and CSF
 - Homotetramer 4 identical 127 amino acid monomers
- Variant forms of TTR protein are encoded by amyloidogenic TTR mutations
 - TTR gene located on long arm of chromosome 18
 - >120 TTR variants described: single amino acid substitutions → mutant subunits
 - Tetramers with ≥ 1 mutant subunits are kinetically or thermodynamically unstable
 - Dissociate under physiologic conditions to release monomers prone to misfolding

Adapted from Buxbaum NEJM 2018

ATTR: Worldwide Distribution & Characteristics

Maurer, M.S. et al. J Am Coll Cardiol. 2016;68(2):161-72.

Disease	Mutation	Population & Age of Onset
wtATTR-CM	None (Wild Type)	Accumulations in >20% of >80yo Male predominant (9:1) >70 years
hATTR-CM (FAC)	V122I (V141I)	3-4% African Americans (West African Descent) Male predominant (3:1; Gene+ 1:1) >60 years
hATTR-CM and/or -PN (or mixed FAC-FAP)	T60A (T80A)	Northern Ireland descent Male predominant (2:1) >45 years

Merican linereasing Recognition of ATTR-CM 140-Number of new diagnoses of ATTR-CM ATTRwt-CM V122I-hATTR-CM Non-V122I-hATTR-CM Increased awareness (with emergence of therapies) Validated non-invasive diagnostic techniques Increased access to genetic testing / screening Adapted from Lane, et al. Circulation 2019

Clinical Features

American Heart ATTR-CM: Infiltrative & Restrictive

Restrictive CMP

- Increased mass (LVH & RVH) without dilatation
- Stiff, poorly compliant
- Progressive diastolic filling abnormalities
- Atrial infiltration impairs atrial contraction

Amyloid Deposits

- Deposition into the extracellular space
 - Stiffened extracellular space
 - Myocyte compression
 - Microvascular ischemia
 - Direct myocyte damage
- Dysfunction myocardial, conduction, valvular

Clinical Presentations

American Hereditary ATTR

'Red flag' presenting features and diagnostic testing for Cardiologist

	Clinical signs / symptoms	Diagnostic testing
Cardiac	 Biventricular HF presentation (dyspnea, orthopnea, edema) Intolerance to HF GDMT Low-normal BP; prior HTN Late-onset LVH w/o HTN Atrial fibrillation / flutter SSS / AV block Aortic stenosis 	Elevated natriuretic peptides Chronic mild troponin elevation Negative monoclonal proteins (i.e., sIFE, uIFE, sFLC) Basic Labs
	Carpal tunnel syndrome	Discordant LVH on imaging vs. relative
Nerves	Lumbar spinal stenosis Peripheral neuropathy Orthostatic hypotension	low voltage on ECG ECG
Kidney	Renal impairment	 Concentric LV hypertrophy Biventricular hypertrophy Longitudinal strain (globally impaired, relative apical sparing)
GI	Weight lossNausea, early satietyDiarrhea/constipation	Diffuse subendocardial LGE Prolonged T1 relaxation times Increased ECV CMR

Adapted from Zhang, et al. Am J Med 2021

Diagnosing hATTR Amyloidosis

American Articles Tc99m-PYP Scanning for ATTR-CM

Diagnostic scoring

Clinical Suspicion¹

Heart failure, syncope, or bradyarrhythmia with ECG suggesting/indicating cardiac amyloid

Rule out plasma cell dyscrasia by serum and urine IFE & serum free light chains

Bone Scintigraphy with 99mTC-DPD/HMDP/PYP Uptake in the heart (arrow) Grade 0 Grade 1 Grade 2 to 3 Absent cardiac Moderate to higher uptake Mild uptake less than bone uptake than bone

Diagnosis*

In a subgroup of 374 patients with EMB:

Absence of a monoclonal protein by sFLC measurement

Grade 2 or 3 cardiac uptake on radionuclide scan

100% specific for presence of cardiac ATTR amyloid¹

Adapted from Gillmore, et al. Circulation 2016

Tc99m-PYP Scanning for ATTR-CM Diagnostic scoring

A Tc 99m scan of patient with ATTR cardiac amyloidosis

Visual score = 0

c Calculations

Visual score

0 = Myocardial uptake absent

- 1 = Myocardial uptake < rib
- 2 = Myocardial uptake = rib
- 3 = Myocardial uptake > rib

(heart ROI mean counts/pixel) (contralateral ROI mean counts/pixel)

Positive Tc99m scan for ATTR

___ Visual score ≥ 2 (88% sens, 88% spec) Qualitative: H/CL ratio ≥ 1.5 (92% sens, 97% spec) Quantitative:

Adapted from Castano, et al. JAMA Cardiol 2016

Importance of SPECT Imaging

Adapted from Zhang, et al. Am J Med 2021

American Peart Passociation. Diagnostic Tests for Cardiac Amyloidosis **Imaging / Blood Biomarkers Diagnostic and Management Goals** Raise Amyloid Early Ventricular Response Diagnosis to Therapy Suspicion Diagnosis Subtyping Assessment Prognosis Burden 2D TTE Key Established Utility Speckle tracking strain ✓ Multicenter experiences and/or ✓ Multiple publications **Cardiac MRI** ✓ International expert consensus Tc99m-PYP TTR? TTR Potential Utility ✓ Single-center experiences PET Low Utility **Natriuretic peptides** AL ✓ Case reports and ✓ Cases series Adapted from Castano, et al. Curr Cardiovasc Risk Rep 2017

Merican Heart Briagnosing Cardiac Amyloidosis

Tissue biopsy

Identifying Amyloid

Typing Amyloid

Adapted from Connors LH, et al. Circulation 2016

- Extra-cardiac biopsy
 - Bone marrow, abdominal fat pad, labial salivary gland
 - Yield: AL (>70%), ATTRm (50-70%) ATTRwt (20-25%)

- Endomyocardial biopsy (EMB)
 - ~100% sensitive / specific
- Congo red stain to identify amyloid
 - Apple green birefringence (polarized light)
- Typing of amyloid
 - Immunohistochemistry (IHC)
 - Less accurate; problematic high background
 - Laser dissection mass spectrometry (mass spec)
 - Gold standard; Mayo Clinic Lab send out
- Genetic test to establish TTR genotype
 - Blood test PCR

Hereditary ATTR with Neuropathy Diagnostic Algorithm Continued

Clinical suspicion of amyloid neuropathy (refer to Figure 2)

Confirmation of ATTRv amyloidosis -

DNA sequencing

Analysis of the amyloidogenic TTR variant

Amyloid typing

Immunohistochemistry or mass spectrometry

Biopsy of amyloid deposition

Possible biopsy sites: Labial salivary gland; subcutaneous fatty tissue of abdominal wall; skin; kidney; nerve; gastrointestinal tract including submucosa

Congo red staining with characteristic green birefringence under polarized light Patient follow-up after diagnosis

Clinical examination every 6 months (every 3 months for stages II/III) unless responding well to treatment

Neurology

- · New or progressed symptoms
- Functional scores (eg, walking ability, polyneuropathy disability, neurological impairment score)
- Autonomic (eg, bladder/urinary tract infection, orthostatic hypotension, erectile dysfunction, and gastrointestinal disturbances including diarrhea and early satiety)

Cardiology

- Electrocardiography
- · Echocardiography and NT-proBNP

Ophthalmology

Modified body mass index, weight

Adams, et al. Journal of Neurology 2021

Future Directions

Challenges

- Symptomatic disease attributable to TTR variants repeatedly underdiagnosed clinically
- Use of genetic analysis for identifying TTR variants in the diagnostic or presymptomatic setting remains uncommon
- Clinical penetrance is variable and incompletely understood; no clear genetic predictors of who will get symptomatic ATTR
- Pre-symptomatic testing for TTR variants (e.g., V122I) will need to be linked to clinical tests that reliably determine subclinical disease and response to therapy

Conclusions

American Hereditary ATTR Take Home Points

- Hereditary ATTR presentations vary by genotype
 - Mixed neuro-cardiac presentations are common
- >120 pathogenic TTR mutations
 - TTR V122I variant = most prominent in US and worldwide
 - Affects 1 out of 25 people of African descent
- ATTR-CM is not an uncommon disease
 - There are many undiagnosed cases in HF, Afib, AS, etc.
- Increased awareness is needed to find patients
 - Be attentive to multi-systemic 'red flags'
- Cardiac imaging techniques can increase diagnostic yield
 - Biopsy no longer a necessity in hATTR-CM
- Genomic medicine may change natural history of hATTR

